Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells.

نویسندگان

  • Alatangaole Damirin
  • Hideaki Tomura
  • Mayumi Komachi
  • Masayuki Tobo
  • Koichi Sato
  • Chihiro Mogi
  • Hiromi Nochi
  • Koichi Tamoto
  • Fumikazu Okajima
چکیده

Sphingosine 1-phosphate (S1P) has been shown to exert a variety of biological responses through extracellular specific receptors or intracellular mechanisms. In the present study, we characterized a signaling pathway of S1P-induced cAMP accumulation in human coronary artery smooth muscle cells (CASMCs). S1P induced biphasic cAMP accumulation composed of a short-term and transient response (a peak at 2.5 min) and a late and sustained response ( approximately 4-6 h). The late phase of cAMP accumulation was parallel to the increment of cyclooxygenase-2 protein expression and was inhibited by N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS398), a cyclooxygenase-2-specific inhibitor. We were surprised to find that the cyclooxygenase-2 inhibitor also inhibited short-term cAMP accumulation even when cyclooxygenase-2 protein expression was not yet increased. More interestingly, the short-term cAMP accumulation was also completely inhibited by pertussis toxin, an inhibitor of G(i/o) proteins. JTE-013, a specific antagonist for S1P(2) receptors, inhibited the S1P-induced cAMP accumulation. Furthermore, small interfering RNAs targeted for S1P(2) receptors significantly inhibited the S1P-induced cAMP accumulation. The cAMP response was also inhibited by specific inhibitors for phospholipase C, extracellular signal-regulated kinase pathways, and cytosolic phospholipase A(2). S1P actually activated these enzyme activities and stimulated prostaglandin I(2) (PGI(2)) synthesis. Finally, exogenously applied arachidonic acid and PGI(2) induced cAMP accumulation to a similar extent as S1P. In conclusion, S1P induced cAMP accumulation through S1P receptors, including S1P(2) receptor and G(i/o) protein-mediated stimulation of intracellular signaling pathways involving cyclooxygenase-2-dependent PGI(2) synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostaglandin I(2) production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells.

Ovarian cancer G-protein-coupled receptor 1 (OGR1) and GPR4 have recently been identified as proton-sensing or extracellular pH-responsive G-protein-coupled receptors stimulating inositol phosphate production and cAMP accumulation, respectively. In the present study, we found that OGR1 and GPR4 mRNAs were expressed in human aortic smooth muscle cells (AoSMCs). Acidic extracellular pH induced in...

متن کامل

Synergy between Sphingosine 1-Phosphate and Lipopolysaccharide Signaling Promotes an Inflammatory, Angiogenic and Osteogenic Response in Human Aortic Valve Interstitial Cells

Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphat...

متن کامل

Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist.

Sphingosine 1-phosphate (S1P) induces diverse biological responses in various tissues by activating specific G protein-coupled receptors (S1P(1)-S1P(5) receptors). The biological signaling regulated by S1P(3) receptor has not been fully elucidated because of the lack of an S1P(3) receptor-specific antagonist or agonist. We developed a novel S1P(3) receptor antagonist, 1-(4-chlorophenylhydrazono...

متن کامل

Role of lipoprotein-associated lysophospholipids in migratory activity of coronary artery smooth muscle cells.

The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL acti...

متن کامل

Cyclooxygenase-2-derived prostaglandin E₂ promotes injury-induced vascular neointimal hyperplasia through the E-prostanoid 3 receptor.

RATIONALE Vascular smooth muscle cell (VSMC) migration and proliferation are the hallmarks of restenosis pathogenesis after angioplasty. Cyclooxygenase (COX)-derived prostaglandin (PG) E₂ is implicated in the vascular remodeling response to injury. However, its precise molecular role remains unknown. OBJECTIVE This study investigates the impact of COX-2-derived PGE₂ on neointima formation aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2005